

May 5, 2011

2011 Emerging Technologies Coordinating Council Open Forum

Radiant Cooling: An Integrated Design Strategy to Reduce Building Energy Use

Devin Abellon, P.E. – Business Development Manager Uponor

υροηοι

Clausius Statement:

Heat generally cannot flow spontaneously from a material at lower temperature to a material at higher temperature.

RADIANT COOLING System Advantages

- Ability to Deal with High Direct Solar Gains
- Superior Human Comfort
- Greater Architectural Freedom
- Reduced Drafts and Noise
- Energy Efficiency

ENERGY EFFICIENCY

LBNL Findings:

Depending on the climate, a radiant cooling system in conjunction with a dedicated outside air system (DOAS) could save between 17% - 42% over the baseline VAV system

ENERGY EFFICIENCY

Pacific Northwest National Laboratory

A radiant cooling system in conjunction with a dedicated outside air system (DOAS) could save as much as 53% over the baseline HVAC system

National Renewable Energy Laboratory / U.S. Department of Energy

50% Energy Savings over ASHRAE 90.1 can achieved using a radiant heating and cooling system

American Institute of Architects

ENERGY EFFICIENCY Case Studies

Suvarnabhumi Bangkok Airport Bangkok, Thailand 30.5% Energy Savings

IDeAs Z Squared Design Facility San Jose, California LEED Platinum / Net Zero

Western Science Center Hemet, California LEED Platinum

Cooper Union New York, New York LEED Platinum

NREL Research Support Facility Golden, Colorado LEED Platinum

David Brower Center Berkeley, California LEED Platinum

The Chartwell School Seaside, California LEED Platinum

Portola Valley Town Center Portola, California LEED Platinum

RADIANT COOLING Performance

Sensible Cooling

A radiant cooling system can effectively manage a portion of building's sensible load

12 – 14 BTUH/SF

Direct Solar Loads

In areas with high direct solar loads, the systems capacity can significantly increase to

25 - 32 BTUH/SF

RADIANT COOLING *Typical Parameters*

Tubing

Cross-linked polyethylene (PEX) barrier tubing 5/8" diameter 6" to 9" on center spacing Maximum tubing length per loop – 350'

Operating Water Temperatures

55°F to 58°F 5°F to 8°F temperature differential

Surface Temperature

Minimum 66°F

Slab on Grade

Flooring

Structural Slab

PEX Tubing

Wire Mesh / Rebar

Insulation

Compacted Grade

Suspended Slab

Structural Slab

PEX Tubing

Wire Mesh / Rebar

Metal Deck

Insulation

Topping Slab

Topping Slab

PEX Tubing

Wire Mesh

Insulation

Structural Slab

Wood Deck

Flooring

Topping Slab

PEX Tubing

Wood Deck

Insulation

Ceiling

Wood Frame

Insulation

Aluminum Heat Transfer Plates

PEX Tubing

Drywall

Stud Wall

Wall Framing

Insulation

Quik Track

PEX Tubing

Drywall

RADIANT COOLING *Piping Diagrams*

Local Secondary Injection

CONTROLS

Control Points

- Space Temperature
- Indoor Relative Humidity
- Operative Temperature
- Operating Water Temperatures
- Slab Temperature
- Control Valves
- Circulating Pumps Outdoor Temperature
- Outdoor Relative Humidity

CONTROLS

Control Strategies

- Base load with radiant cooling system and operate as a differential to air setpoint
- Utilize indoor adaptive rest strategy to optimize target water temperature for maximum effectiveness
- Continuously monitor indoor relative humidity for condensation control

RADIANT COOLING Condensation Concerns

Condensation

Surface condensation will occur if the surface temperature drops below the dew point

Continuously monitor indoor relative humidity and maintain supply water temperature 2 degrees above dew point at all times

CONTROLS Control Strategies

Responsiveness

- High thermal mass provides "inertia" against temperature fluctuations
- Heat transfer from the thermal mass to the space is instantaneous whenever there is a temperature difference
- Thermal mass evens out fluctuations in internal temperature
- Secondary system used to handle high load densities

RADIANT COOLING Summary

Benefits

- Can be used to dramatically reduce overall building energy use
- Superior Human Comfort
- Improved architectural freedom

Performance

• 12-14 BTUH/SF Sensible, up to 25-32 BTUH/SF with direct solar for radiant floor installations

Important Considerations

- Controls
- Installation Methods
- Installation and Life-Cycle Costs

Questions?

