Opportunities for Demand Response in California Agricultural Irrigation
Opportunities for Demand Response in California Agricultural Irrigation

Agenda

- Energy Data for California Agricultural Irrigation
- Potential Solutions for Demand Response and Permanent Load Shifting
- Potential and Challenges for Acceptance of Demand Response and Permanent Load Shifting
- Permanent Load Shifting vs. Demand Response
Opportunities for Demand Response in California Agricultural Irrigation

Energy Data for California Agricultural Irrigation

- Annual electrical energy consumed by California agricultural irrigation is approximately 10 billion KWhs.
- The “on-farm” component, the main focus of this presentation, accounts for nearly 75% of the total.
- Virtually all of it is consumed during the months of highest grid stress.
Opportunities for Demand Response in California Agricultural Irrigation

Additional Background Data

- 50,000 Irrigated Farms
- 100,000 Irrigation Pumps
- 8 Million Irrigated Acres
- 30 Million Acre-Feet Applied Annually
Opportunities for Demand Response in California Agricultural Irrigation

Pareto Principle
Regional Skews

Energy Use by Region

Energy per AF of Water

Percent of Total Energy Use for Agricultural Water by Region throughout California:
- 0 - 12%
- 12 - 20%
- 20 - 28%
- 28 - 36%
- 36 - 44%
- 44 - 52%
- 52 - 60%
- 60 - 68%
- 68 - 76%
- 76 - 84%
- 84 - 92%
- 92 - 100%
- No Data

Average Required Energy for Agricultural Water (KWH/AF):
- 82 - 100
- 100 - 125
- 126 - 150
- 151 - 175
- 176 - 200
- 201 - 225
- 226 - 250
- 251 - 275
- 276 - 300
- 301 - 325
- 326 - 350
- 351 - 375
- 376 - 400
- 401 - 425
- No Data
Opportunities for Demand Response in California Agricultural Irrigation

Skews and Trends by Water Source and Irrigation Method

- Greatest energy use comes from on-farm sources, especially on-farm ground water sources.
- There is a continuing trend toward drip/micro irrigation, which saves water but actually *increases* energy use.
- These two reinforce one another.
Opportunities for Demand Response in California Agricultural Irrigation

Pareto Principle of Grower Size and Utility Coverage

- Approximately 14% of the farms irrigate 84% of the acreage.
- Utility coverage of the growing regions in California is dominated by a few utilities but especially PG&E.
POTENTIAL SOLUTIONS FOR DEMAND RESPONSE AND PERMANENT LOAD SHIFTING
Opportunities for Demand Response in California Agricultural Irrigation

Definitions

- **Demand Response**: Peak-load shifting based on “events” and/or dynamic price data
 - Manual or Slow DR:
 - *Scheduled in advance*
 - *Human controller acceptable*
 - Fast or Auto DR:
 - *Real-time response to events and/or dynamic price data*
 - *Requires automation*

- **Permanent Load Shifting**:
 - *Load permanently shifted off-peak*
 - *Time-of-Use (TOU) Rate Programs*
Opportunities for Demand Response in California Agricultural Irrigation

Conditions

- Agricultural irrigation schedules are “intrinsically” flexible.
- TOU rate plans are common in California agriculture.
 - 80% of PG&E agricultural revenue
 - 70% of SCD agricultural revenue
- Nearly all pumps are manually controlled.
Opportunities for Demand Response in California Agricultural Irrigation

Solutions (Requirements)

- **On-farm Source**
 - More flexible than agency source

- **Adequate Irrigation System Capacity**
 - Does it need to run 24/7 during peak ET periods?

- **Automatic Controls**
 - Required for AutoDR

- **Storage**
 - Water pumped into storage during off-peak periods
 - Gravity fed or lower-power booster pumps during peak periods

- **Variable Frequency Drives**
 - Improve efficiency
 - Reduce stress on wells and pumps

- **Capacity Generated by Other Efficiency Measures**
 - Efficiency measures may free up capacity that can contribute to TOU or DR participation
Irrigation System Capacity

- Optimally it has sufficient capacity to irrigate crops during peak evapotranspiration (ET) periods without running constantly.
- If not, then there may still be potential for shifting load during non-peak ET periods.
Automatic Controls

- Schedule discipline for slow DR and TOU plans.
- Required for AutoDR
- Minimal local controller with remote Demand Response Automation Server (DRAS) client
- Robust local controller with resident DRAS client (e.g. OpenADR)
- May “piggy-back” on other use such as remote monitoring and/or efficiency controls.
Opportunities for Demand Response in California Agricultural Irrigation

Variable Frequency Drives

- **Efficiency**: Avoid pressure shedding
 - Match pump to distribution requirement
 - Using the same pump for different distribution systems or blocks

- **Variable speed for flood irrigation**
 - Improve efficiency
 - Reduce speed for DR or TOU peak periods

- **Soft start/stop potential**
 - Reduce stress on pumps and wells
 - Increase potential for DR and TOU program participation
Opportunities for Demand Response in California Agricultural Irrigation

Other Efficiency Measures

• Still Significant Potential for Overall Pumping Plant Efficiency (OPPE) Improvements
 – 35% of well pumps and 51% of other irrigation pumps still have low efficiency (less than 50%)
 – The Advanced Pumping Efficiency Program (AEP) administered by the Center for Irrigation Technology (CIT) in Fresno resulted in less than 14% of California’s agricultural irrigation pumps tested and less than 0.7% retrofitted during the 2002-2008 phase.

• Reduction in Friction losses
 – Reduce friction losses in and around pump assembly (part of OPPE)
 – Reduce mismatch between pump discharge pressure and distribution system requirements
 – Reduce flow rates for flood irrigation (where possible)

• Reduction in Water Application
 – Improve application uniformity (drip/micro conversions)
 – Improve irrigation scheduling through environmental monitoring
 • Weather, soil moisture, etc.
 • may go the other way (It may be determined that more water is needed)
POTENTIAL AND CHALLENGES FOR ACCEPTANCE OF DEMAND RESPONSE AND PERMANENT LOAD SHIFTING
Opportunities for Demand Response in California Agricultural Irrigation

Potential for Acceptance

• Water Source
 – On-farm source with excess capacity
 – On-farm source without excess capacity
 – Off-farm (agency) source

• Permanent Load Shifting vs. Demand Response

• Manual DR vs. AutoDR

• ROI for Grower
Grower ROI

- Financial incentives must match the cost
 - Significant if system upgrade is required
- Other potentially compelling motivations when combined with TOU or DR
 - Energy Efficiency or Demand Management (reducing peak-load fees)
 - Remote Pump Monitoring and Control
Opportunities for Demand Response in California Agricultural Irrigation

Permanent Load Shifting vs. Demand Response

- Permanent Load Shifting in the form of TOU rate plans are already widely accepted among California growers.
- Manual Demand Response through aggregators has gained some acceptance in the last few years.
- AutoDR has gained little or no acceptance.
 - Automatic controls of any kind are rare in California agricultural irrigation.