

# **Our Team**



Nicholas Fette Project Manager, Lincus



Steven Long, P.E.
Director of
Engineering, ICF



Nicolas Campbell
Project Manager,
Lincus



Cristalle Mauleon
Engineering
Manager, Lincus



# Agenda

- Introduction
- Background
- Assessment Objectives
- Utility Rate Tariffs and Emission Analysis
- DHW Models, Emissions, and Fuel Costs
- TSB and Simple Payback Analysis
- Conclusions



# Introduction



#### Key Focus Areas

- Energy consumption
- Operating costs
- Greenhouse gas (GHG) emissions

#### System Comparisons

- Baseline: 84% efficient gas boiler
- Condensing Boiler: 97% efficient
- Electric Heat Pump Water Heater (EHPWH)
- Gas Absorption Heat Pump (GAHP)
- Preheats make-up water & reheats recirculation (Case 3)
- Preheats make-up water only (Case 4)

#### GAHP Advantages

- Lower GHG emissions
- Improved energy efficiency
- Cost-effective in California climate

# **Assessment Objectives**

Modeling study of DHW systems in multifamily buildings using models based upon approved DEER prototypes.

- 1. Compare metrics for (5) DHW systems:
  - Baseline: 84% efficient gas-fired boiler
  - Measure Case 1: 97% efficient condensing gas-fired boiler
  - Measure Case 2: EHPWH
  - Measure Case 3: GAHP paired w/boiler preheating city water and reheating of recirculation water
  - Measure Case 4: GAHP paired w/boiler preheating city water only

- 2. Metrics to be compared:
  - a. Utility capital costs
  - b. Return on investment (ROI)
  - c. Greenhouse gas (GHG) impacts
  - d. Total system benefit (TSB)



# **Utility Rate Tariffs and Emission Analysis**



# Climate Zone – Utility Mapping

- Estimating operating costs and GHG emissions using available rate tariffs and the IOU balancing the region.
- One IOU in each climate zone is used.
- This results in one electric tariff per climate zone and service type.
  - Tiered
  - TOU

| CA Climate<br>Zone | Electric | Gas   | IOU balancing area region |
|--------------------|----------|-------|---------------------------|
| CZO1               | PG&E     | PG&E  | NP-15                     |
| CZO2               | PG&E     | PG&E  | NP-15                     |
| CZO3               | PG&E     | PG&E  | NP-15                     |
| CZO4               | PG&E     | PG&E  | NP-15                     |
| CZO5               | PG&E     | PG&E  | NP-15                     |
| CZO6               | SCE      | SCG   | SP-15                     |
| CZO7               | SDG&E    | SDG&E | SP-15                     |
| CZO8               | SCE      | SCG   | SP-15                     |
| CZO9               | SCE      | SCG   | SP-15                     |
| CZ10               | SCE      | SCG   | SP-15                     |
| CZ11               | PG&E     | PG&E  | NP-15                     |
| CZ12               | PG&E     | PG&E  | NP-15                     |
| CZ13               | PG&E     | PG&E  | NP-15                     |
| CZ14               | SCE      | SCG   | SP-15                     |
| CZ15               | SCE      | SCG   | SP-15                     |
| CZ16               | SCE      | SCG   | SP-15                     |



## **Electric Rate Tariffs**

- Representative electric rate tariffs were chosen for this analysis from each IOU, both for tiered and time-of-use (TOU) plans.
  - Multifamily eligibility
  - No unique qualifiers such as EV, solar, IOU employment, etc.
  - Most widely applicable from each IOU

#### Representative Electric Rate Tariffs by IOU

| IOU   | Type of Service | Electric Rate Tariff                            |  |  |
|-------|-----------------|-------------------------------------------------|--|--|
| PG&E  | Tiered          | ES - Multifamily Service                        |  |  |
| FGQE  | TOU             | TOU - C - Residential Time-of-use               |  |  |
| SCE   | Tiered          | D: Domestic Service                             |  |  |
|       | TOU             | TOU - D - 4-9PM                                 |  |  |
| SDG&E | Tiered          | DS - Domestic Service                           |  |  |
|       | TOU             | TOU - DR - Residential - Time of Use<br>Service |  |  |



# **Gas Rate Tariffs**

- The same sources and methods used for choosing the representative electric tariffs were also applied to choose the gas tariffs.
- There are far fewer options for natural gas rates.

#### Representative Gas Rate Tariffs by IOU

| IOU      | Default Electric Rate Tariff           |  |  |
|----------|----------------------------------------|--|--|
| РОСБ     | G-1: Residential Service               |  |  |
| PG&E     | GS: Multifamily Service                |  |  |
|          | GS: Multifamily Service                |  |  |
| SoCalGas | GM: Master-Metered Multifamily Service |  |  |
|          | GS: Multifamily Service                |  |  |
| SDG&E    | GM: Master-Metered Multifamily Service |  |  |



## **Cost Calculation Methods**

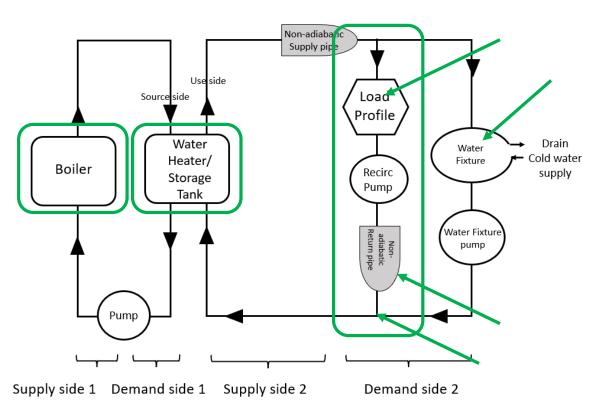
- Cost Calculation Approach
  - All tariffs include fixed monthly/daily charges
  - Climate zone, season, and baseline allowances affect costs
  - EnergyPlus models output whole-building and DHW system usage
  - Excel tool automates cost and emissions calculations
    - Inputs: hourly energy data, climate zone, service type, start year
    - Outputs: monthly usage, costs, emissions



# **GHG Emissions Factors**

 To evaluate and optimize source fuel usage or greenhouse gas emissions, source fuel and GHG factors from the 2024 CPUC California ACC Electric and Gas models were used.

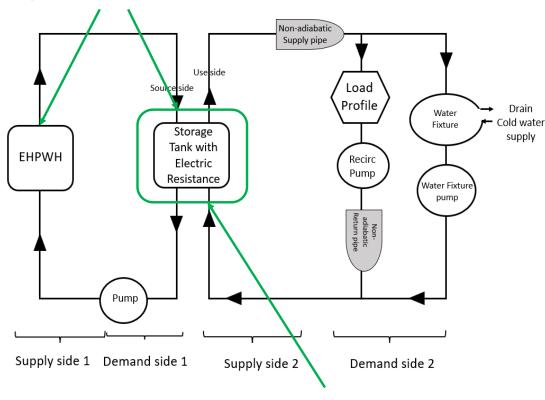
#### AC/Gas Furnace Model, Gas Water Heaters Emissions Analysis


| Month         | Syste<br>m<br>kWh<br>Usage | System<br>Therms<br>Usage | Facility<br>kWh<br>Usage | Facility<br>Therms<br>Usage | System GHG Emission s (kg/CO2/ yr) | Facility GHG Emission s (kg/CO2/ yr) |
|---------------|----------------------------|---------------------------|--------------------------|-----------------------------|------------------------------------|--------------------------------------|
| January       | _                          | 30.37                     | 268.31                   | 38.73                       | 161.17                             | 330.38                               |
| February      | -                          | 27.47                     | 244.70                   | 39.90                       | 145.80                             | 309.40                               |
| March         | -                          | 30.30                     | 266.37                   | 34.52                       | 160.81                             | 272.35                               |
| April         | -                          | 29.34                     | 258.09                   | 36.69                       | 155.71                             | 272.19                               |
| May           | -                          | 30.29                     | 266.71                   | 32.71                       | 160.77                             | 253.63                               |
| June          | -                          | 29.15                     | 265.57                   | 30.81                       | 154.71                             | 263.84                               |
| July          | -                          | 30.09                     | 268.91                   | 31.80                       | 159.67                             | 275.73                               |
| August        | -                          | 30.15                     | 273.54                   | 31.88                       | 160.01                             | 299.91                               |
| Septembe<br>r | -                          | 29.21                     | 260.23                   | 30.92                       | 155.00                             | 281.61                               |
| October       | -                          | 30.25                     | 268.20                   | 32.79                       | 160.53                             | 294.75                               |
| November      | -                          | 29.40                     | 261.11                   | 35.66                       | 156.05                             | 304.38                               |
| December      | -                          | 30.35                     | 271.23                   | 41.01                       | 161.06                             | 338.36                               |



# DHW Models, Emissions, and Fuel Costs

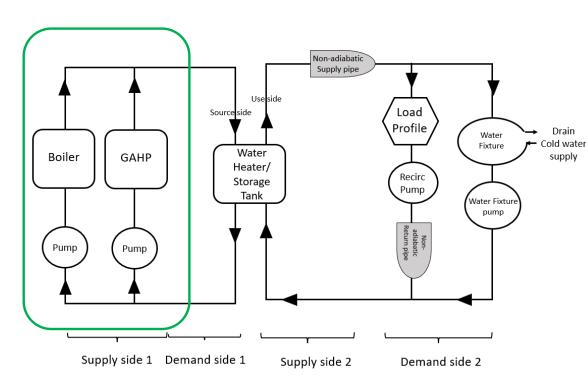



# Base Case: Boiler with 84% Thermal Efficiency & Measure Case 1: Condensing Boiler with 97% Thermal Efficiency



- EnergyPlus translated architecture
- Outlet of the water heater/storage tank on the use side temperature setpoint = 135
- Base case
  - 84% thermal efficiency
  - Non-condensing boiler efficiency curve
- Measure case 1
  - 97% thermal efficiency
  - Condensing boiler efficiency curve

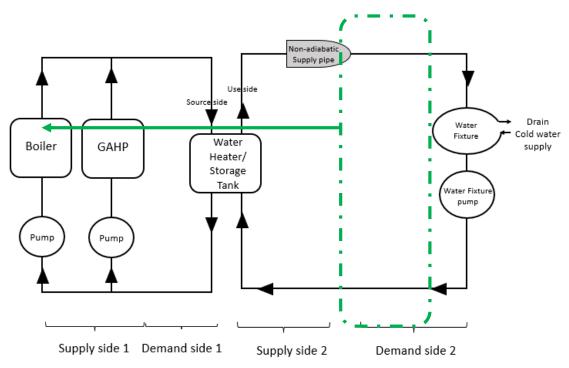
## Measure Case 2: Electric Heat Pump Water Heater (EHPWH)


#### Storage tank vol \*& HPWH Capacity



- EnergyPlus translated architecture
- The storage tank includes an electric resistance as a backup to compensate for any temperature drops below a specified threshold.
  - Tank setpoint temperature = 135 °F
  - Deadband = 3.6 °F
- Ecosizer tool
  - Used to determine the appropriate tank volume and heating capacity
  - The curve fit is then hardcoded into EnergyPlus

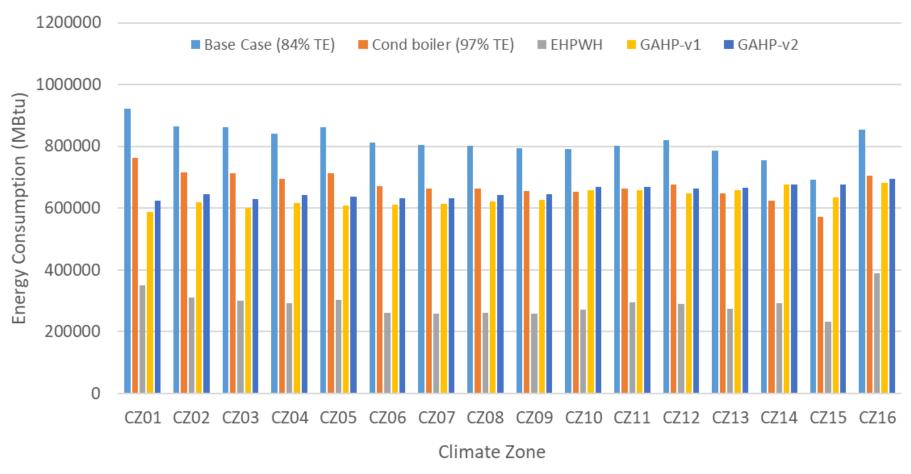



## Measure Case 3: GAHP Acting as Preheat and Reheating Recirc Water



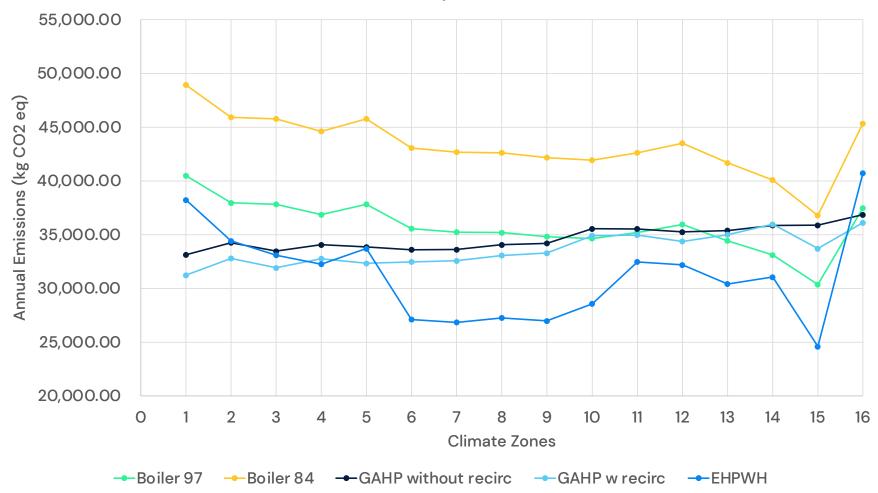
- EnergyPlus translated architecture
- GAHP and boiler operate in parallel to heat the storage tank
  - Load distribution scheme are set to "Optimal" in EnergyPlus
- Outlet of the water heater/storage tank on the use side temperature setpoint = 135 °F
- Robur GAHP with a capacity of 123 kBTU is used
- Boiler and tank capacities are already auto-sized in the base case




### Measure Case 4: GAHP Acting as Preheat

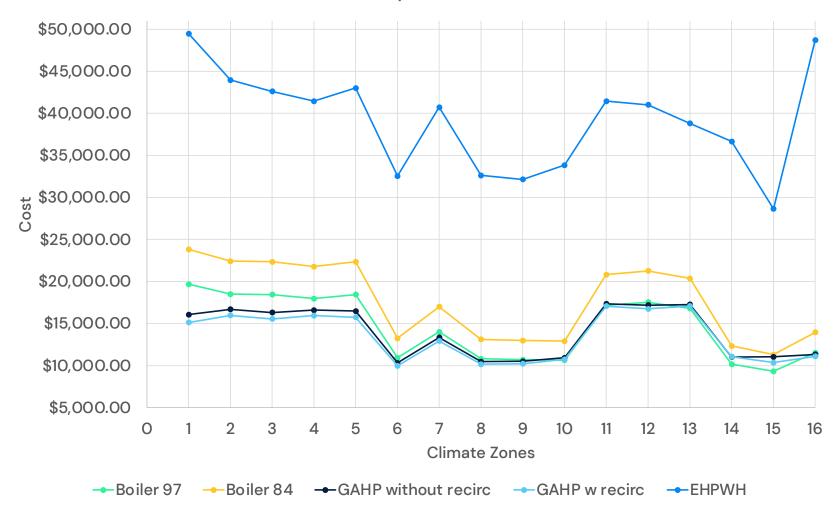


- EnergyPlus translated architecture
- Modified by removing the recirculation branch from the right loop
  - Calculated recirculation energy use is added to the boiler energy consumption in the left loop
  - Makes boiler responsible for heating recirc water rather than GAHP




#### Annual Energy Consumption of Base and Measure cases in different Climate Zones






### Annual Emissions per Climate Zone





#### Annual Cost per Climate Zone





# TSB and Simple Payback Analysis



## **Measure Cost**

- Cost Assumptions for DHW Systems
  - All systems use existing storage due to oversized tanks from EnergyPlus auto-sizing.
  - Condensing Boiler (97%): Costs from 2024 RS Means.
  - EHPWH: Costs from SWWH028 measure package.
  - GAHP: Material costs and labor costs from field study work.

| System                | Material Cost | Labor Cost | Total Measure Cost |
|-----------------------|---------------|------------|--------------------|
| 97% Condensing Boiler | \$42.99       | \$8.95     | \$51.94            |
| EHPWH                 | \$160.44      | \$23.91    | \$184.35           |
| GAHP v.1              | \$150.63      | \$170.30   | \$320.92           |
| GAHP v.2              | \$150.63      | \$170.30   | \$320.92           |



# **TSB Results**

# Total System Benefit (TSB)

- TSB combines energy savings and refrigerant impacts.
- EHPWH has refrigerant costs;
   GAHP does not.
- Calculated using CET and RACC tools.

| Climate<br>Zone | 97% Condensing<br>Boiler | EHPWH    | GAHP<br>v.1  | GAHP<br>v.2 |
|-----------------|--------------------------|----------|--------------|-------------|
| CZO1            | \$183.24                 | \$468.52 | \$487.0<br>9 | \$434.88    |
| CZO2            | \$172.95                 | \$457.99 | \$361.36     | \$321.38    |
| CZO3            | \$172.37                 | \$469.81 | \$381.44     | \$338.65    |
| CZ04            | \$168.27                 | \$456.47 | \$326.15     | \$290.20    |
| CZ05            | \$172.34                 | \$454.18 | \$370.0<br>4 | \$328.16    |
| CZO6            | \$164.15                 | \$417.62 | \$291.88     | \$260.69    |
| CZ07            | \$167.01                 | \$396.78 | \$286.16     | \$256.49    |
| CZO8            | \$162.53                 | \$408.02 | \$263.25     | \$235.61    |
| CZO9            | \$160.92                 | \$405.66 | \$244.91     | \$219.78    |
| CZ10            | \$159.90                 | \$378.09 | \$193.57     | \$175.88    |
| CZ11            | \$160.90                 | \$414.62 | \$210.32     | \$194.83    |
| CZ12            | \$164.31                 | \$429.61 | \$252.02     | \$227.63    |
| CZ13            | \$157.51                 | \$417.21 | \$184.14     | \$173.39    |
| CZ14            | \$152.79                 | \$297.83 | \$113.49     | \$116.52    |
| CZ15            | \$140.50                 | \$332.03 | \$84.68      | \$24.73     |
| CZ16            | \$172.06                 | \$287.97 | \$254.19     | \$233.75    |



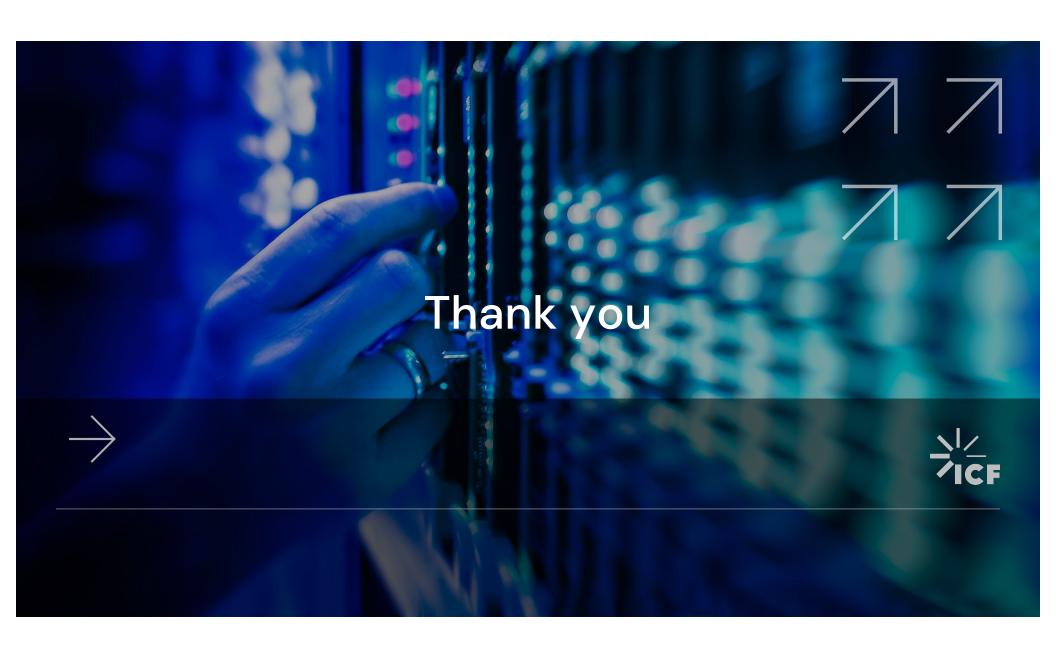
# Simple Payback

| Climate<br>Zone | 97%<br>Condensing<br>Boiler | EHPWH | GAHP v.1 | GAHP v.2 |
|-----------------|-----------------------------|-------|----------|----------|
| CZ01            | 1.85                        | N/A   | 4.56     | 5.11     |
| CZO2            | 1.96                        | N/A   | 6.15     | 6.91     |
| CZO3            | 1.97                        | N/A   | 5.83     | 6.56     |
| CZO4            | 2.01                        | N/A   | 6.81     | 7.66     |
| CZO5            | 1.97                        | N/A   | 6.01     | 6.77     |
| CZO6            | 3.30                        | N/A   | 12.09    | 13.53    |
| CZO7            | 2.56                        | N/A   | 9.74     | 10.87    |
| CZO8            | 3.34                        | N/A   | 13.40    | 14.97    |
| CZO9            | 3.37                        | N/A   | 14.40    | 16.05    |
| CZ10            | 3.39                        | N/A   | 18.22    | 20.06    |
| CZ11            | 2.11                        | N/A   | 10.57    | 11.41    |
| CZ12            | 2.06                        | N/A   | 8.82     | 9.76     |
| CZ13            | 2.15                        | N/A   | 12.07    | 12.82    |
| CZ14            | 3.55                        | N/A   | 31.08    | 30.27    |
| CZ15            | 3.86                        | N/A   | 41.66    | 142.64   |
| CZ16            | 3.15                        | N/A   | 13.88    | 15.09    |

- Uses the measure costs and annual operation costs to determine how many years of operational savings it takes to pay off the cost of the system.
- EHPWH has no payback period due to negative cost savings.
- The 97% efficient condensing boiler has the lowest simple payback periods of all the systems.
- Marked yellow indicate payback periods greater than the expected useful life (EUL) of the GAHP.



## Conclusion


#### **Key Findings:**

- All systems reduced energy consumption and GHG emissions compared to the baseline, but not fuel costs.
- EHPWH consumed the least site energy but had operational costs 3x higher than gasfueled systems.
- GAHP systems competed with EHPWH in emissions in some climate zones.

#### **Economic Insights:**

- Condensing boilers had the shortest payback period due to low initial costs, despite smaller energy savings.
- EHPWH had negative cost savings and no payback period due to high operational costs.
- GAHP systems had short payback periods (as low as 4 years) in favorable zones but were not cost-effective in less favorable climates.



