

Program & Team

PG&E Code Readiness Program

 Supports the development, adoption, and implementation of California's building and appliance energy codes through long-range planning and data collection.

Project Team

Company	Role
Pacific Gas & Electric (PG&E)	Project Sponsor, Program Administrator
2050 Partners	Project Manager, Program Implementer
Enesfere	Technical Lead
Quantum Energy Analytics	Market Characteristic Surveys & CPUC Data Mining

Background

2022 Title 24 Code Cycle

- Title 24 adopts steam trap requirements for new construction and additions
 - o Central monitoring with fault detection
 - Strainer with blowdown valve
 - Applies to systems with more than 5 MMBtu/h of connected steam boiler capacity and steam trap assemblies at pressures above 15 psig

Code Readiness Research—2023-2025

– What would be the impact and feasibility of extending these requirements to steam trap assemblies in existing steam systems?

Final report: https://etcc-ca.com/reports/steam-trap-fault-detection-diagnostics-existing-industrial-applications

California steam-using industries

Source: PG&E Code Readiness Compilation of Local Air District Boiler Permits

Steam trap basics

Function

Self-acting valve that discharges air and condensate from the steam systems

Applications

- Drip
- Process
- Tracer

Failure Consequences

- Closed → safety and process issue
- Open → wastes energy

Image Credit: Watson McDaniel

Steam trap strainers & blowoff valves

External Strainer

Integral Strainer

Strainer Blowoff Valve

Source: Watson McDaniel (left and middle), Steam Trap Survey LLC (right)

Steam trap monitoring

Source: Armstrong International (left), Everactive (middle), Spirax Sarco (right)

Source: Armstrong International

Methods

Activity	Notes
Existing Dataset Reviews	 Local Air District Boiler Permits: 9,000+ boiler entries DOE Industrial Assessment Centers: Audit data for 128 steam-using plants in California CPUC Impact Evaluations: Survey data for ≈15,000 steam traps Steam Trap Survey Data from a Major Vendor: Three facilities Major Industrial Plant Database: 200+ steam-using plants in California
Market Characteristic Surveys	 Ten (10) surveys with owners and operators about steam trap maintenance
Stakeholder Interviews	 Interviews with thirty-four (34) stakeholders, including vendors, owners, operators, trade organizations, steam industry professionals, air district personnel, and code enforcement officials
Statewide Impacts & Cost-Effectiveness Analysis	 Statewide energy savings estimates Cost-effectiveness analysis Payback and incremental measure cost uncertainty analysis ASHRAE scalar analysis for heating systems

Conclusions

We do not recommend extending the current Title 24 requirements to existing steam systems.

- Steam trap monitoring lacks third-party evaluations.
 - Stakeholders have asked for hard data.
- Savings persistence is a major area of uncertainty.
- Cogeneration is common at oil refineries and lumber mills, which are major steam users in California.
 - o Reducing steam use may or may not reduce emissions.
- Hazardous locations can make implementation of steam trap monitoring challenging or infeasible.

Recommendations

- Clean up the existing code language.
 - o Define monitoring system capabilities that satisfy the code requirement.
 - o Exempt applications with harsh environmental conditions.
- Consider developing a utility measure workpaper for steam trap fault detection.
- Focus future research on technological efficacy and operator behavior.
- Consider hardware-only solutions for steam traps.
- Consider steam trap monitoring and strainers for future code cycles.

