

Why Focus on Split-System HPWHs in Multifamily now?

Emerging

Decarbonization Solution

Split-system HPWHs offer a critical alternative to installation of unitary models in challenging locations.

Regulation Changes

Upcoming zero-NOx regulations (2027 Bay Area, 2030 statewide) will phase out gas water heaters.

Market Needs

1.5 million CA multifamily units have small (under 50-gallon) inunit water heaters, often in constrained spaces.

Image Source: New Zealand Energy Efficiency & Conservation Authority

Multifamily Split-System Heat Pump Water Heater Market Study

The Objectives

- Evaluate split-system HPWHs for **energy**, **cost**, **and hot water performance** in multifamily homes.
- Identify adoption barriers through secondary research and stakeholder engagement and provide actionable recommendations.

The Method

- Analyzed market conditions and product readiness via literature review and stakeholder interviews.
- Modeled energy and cost impacts using NREL ResStock and simulations across California climates.

Market Landscape of Split-Systems

Monobloc (Split-System) HPWH

Single outdoor unit with all heat pump refrigeration cycle components. Heated water is piped to the interior storage tank.

Split (Split-System) HPWH

Primary heat pump components in the outdoor unit and refrigerant lines transfer heat to the interior storage tank with a heat exchanger.

Electric, Gas, and HPWHs: A Side-by-Side Comparison

Water Heater Type	Tank Height (in)	Tank Diameter (in)	Refrigerant	UEF	First Hour Rating (gal/hr)	Price
Electric Lowboy	34	26	n/a	0.89	50	\$539
Natural Gas Short	47	20	n/a	0.57	68	\$769
Unitary HPWH	66	20	134a	3.6	55	\$2,098
Split HPWH	73	19	513A	4.29	57	\$3,350
Split 120V HPWH	73	19	513A	3.0	50	\$3,350
Monobloc HPWH	39	25	CO2	3.66	69	\$5,856

Emerging Trends:

- Space constraints: manufacturers responding with solutions for MF, MMH, and ADUs.
- Transition to low-GWP refrigerants
- High efficiency and capacity recovery of splitsystems
- Higher first costs for split-system HPWHs
- Plug-in 120V options

Key Findings

Emerging Products

Contractors have limited familiarity with the few split-system HPWHs currently eligible for incentives and commercially available.

Overcoming Unitary HPWH Barriers

Split-system HPWHs enable outdoor heat pump placement, solving ventilation, noise, and space limitations of unitary HPWHs.

Eliminating Interactive Effects

Interior installs of unitary
HPWHs interact with
HVAC. Split-systems
eliminate interactive effects.

RTF Analysis of Unitary and Split-System HPWHs

Split-system HPWHs show higher energy savings than unitary models in conditioned spaces

HPWH configuration*	ΔkWh/yr***	Δtherms/yr	ΔMMBTU/yr
Tier 3 Unitary HPWH (in living space)	1631	-32	2.36
Tier 3 Unitary HPWH (garage installation)	1494	0	5.10
Tier 3** Monobloc system w/ out resistance heat	1720	0	5.87

^{*}Savings represent all tank sizes

^{***}Includes interactive effects of heating and cooling loads with electric water heater, central AC, and gas furnace; and climate assumptions for Seattle, WA

^{**}From NEAA Qualified Products Tier 3- rated models

Optimizing HPWHs for Location and HVAC Types

Consistent modeled energy savings when replacing a gas water heater (many of the CA MF water heaters)

Pathway Forward

- ✓ **Scaling the market** through early-market opportunities (e.g., Hot Water Innovation Prize)
- ✓ Lab and field evaluations to gather performance data and best practices.
- ✓ Cost compression and simplified installations with plumber/HVAC/DIY friendly solutions
- ✓ Update CA eTRM to include split-system systems and location / HVAC interactive impacts
- ✓ Address incentive gaps and limitations in California efficiency programs

veic

Contact Info

Rose Wall
Rwall@veic.org

Special Thanks

- AO Smith
- Association for Energy Affordability
- CalMTA
- Carbon Zero Build
- Eco-Logical
- ECO₂ Systems

- Embertec
- Energy Solutions
- Midea
- NBI
- Northwest Energy Efficiency Alliance
- Redwood Energy

