

Applying Cogeneration to Facilities with Industrial Refrigeration

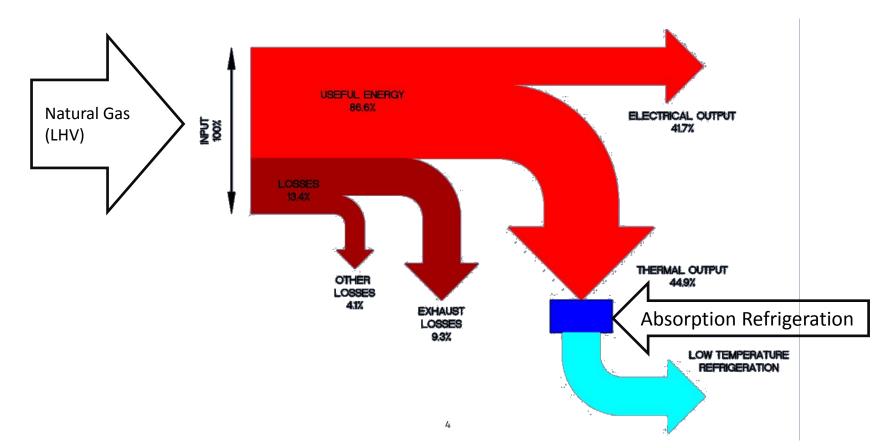
Ray Cole, PE

CEO, Axiom Engineers, Inc. Monterey, CA

Principal, CLP Energy LLC Smithtown, NY and Monterey CA

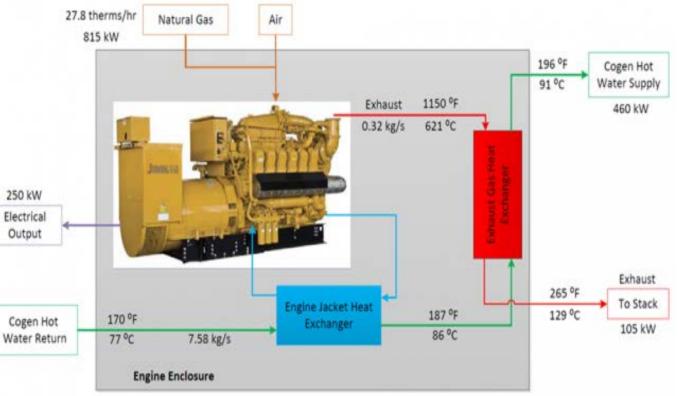
The learning objectives are:

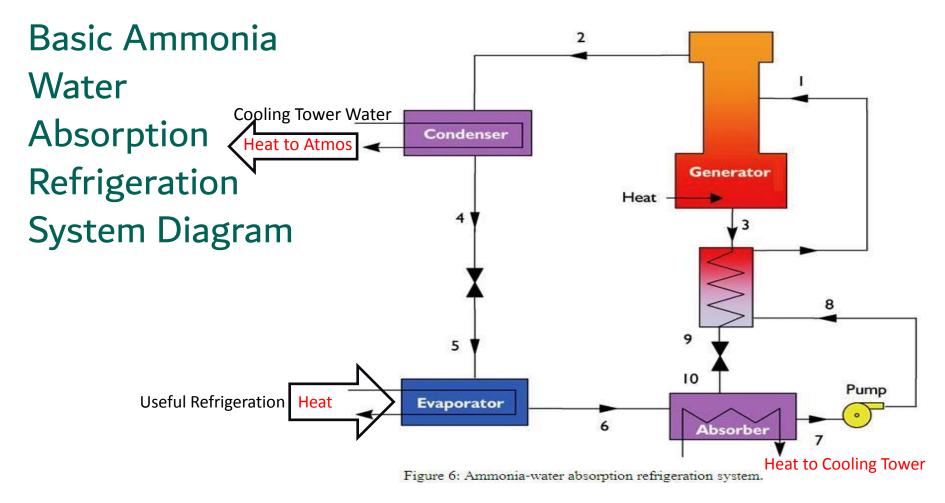
- 1. Develop basic understanding of cogeneration and its application to industrial refrigeration
- 2. What are the key elements of a good technical application.
- 3. What are the key elements of a financially feasible application.
- 4. What added value opportunities exist for a total energy solution

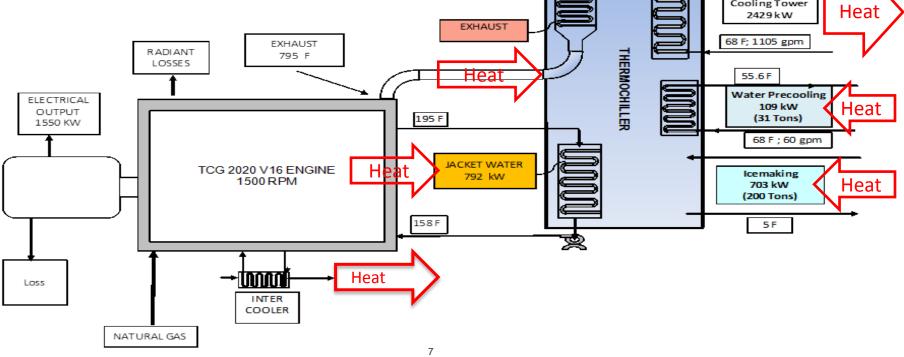

What is Cogeneration and why explore it for facilities with Refrigeration?

Answer: Operating Cost Savings

- Cogeneration is using fuel to simultaneously produce electrical power and useful heat
- Properly applied Cogeneration results in lower cost of operation for a facility.
- The by product heat of Natural Gas power generation provides economical industrial and commercial refrigeration


The Cogen + Refrigeration Concept




Basic Natural Gas Engine Cogeneration Unit Diagram

The "Axiom Cycle" Cogen System

The Economics of Cogeneration coupled to Ammonia Absorption Refrigeration Depend On:

- Efficiency of Engine Generator The Cost of Utility Electrical
- Cost of The Plant
- Cost of Capital
- Cost of Maintenance
- Cost of Fuel i.e. Nat Gas

Energy

- Annual operating Hours
- Percent of byproduct heat used beneficially
- COP of Absorption Unit

The Economics of Cogeneration are greatly affected by Public Policy

- Air Quality Regulations
 - Can significantly increase Cost of Plant
- Utility interconnection requirements
 - Can increase cost and extend schedule
- Incentives and Tax Policy
- Utility Rate Structures
- Carbon Footprint Concerns

Developments Reducing First Cost

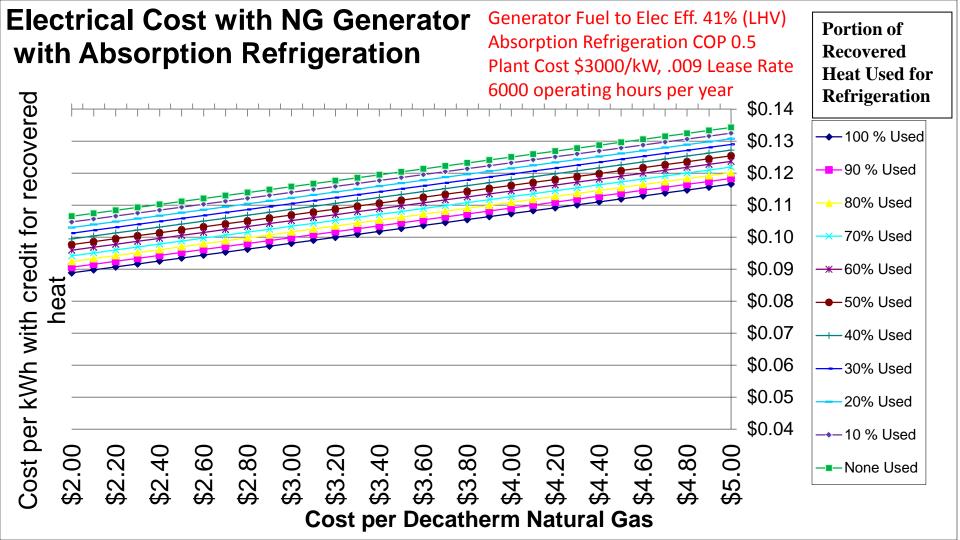
- Factory Packaged Modular Cogeneration Units
- Factory Packaged Modular Ammonia Absorption Refrigeration
- Standardization of Designs
- Automation with Remote Monitoring and Control

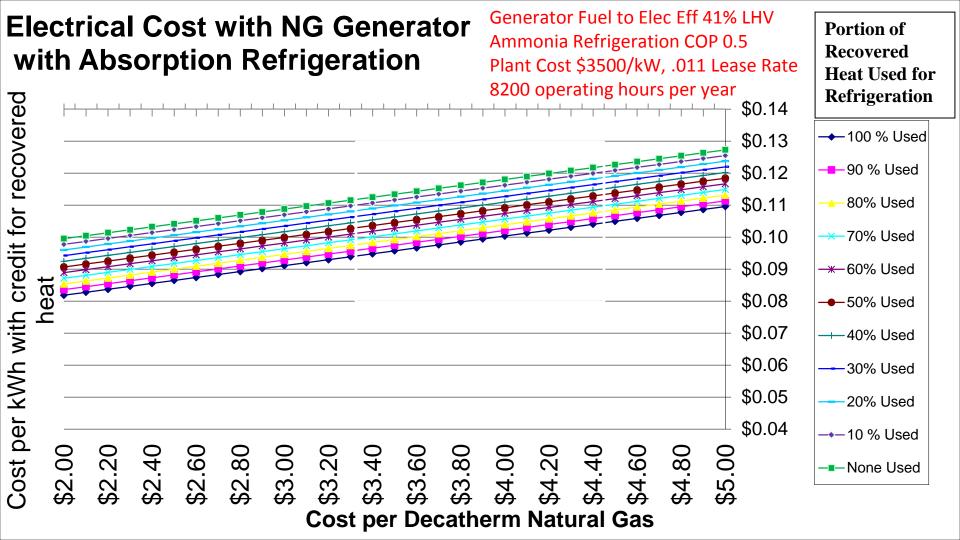
Developments Reducing Operating Cost

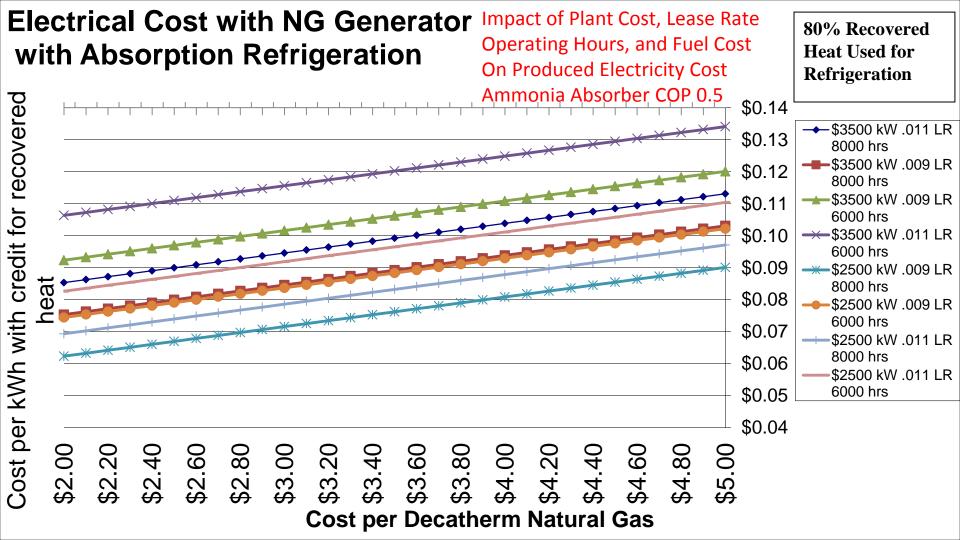
- Shale Gas development
- Higher efficiency natural gas engines
 - Above 40% fuel to electric efficiency is common
- Longer Maintenance Intervals
 - Up to 60 K hours before Major Overhaul
- Smart On Board Control and Remote Monitoring
 - Ability to maintain efficiency and minimize unplanned service outages
- Factory Standard Designs for optimum efficiency

So, when does Cogeneration with Absorption Refrigeration Make Sense?

Build a Spreadsheet Model and Test for Variations in:


- First Cost
- Fuel Cost
- Capital Recovery Cost
- Operating Hours


- Maintenance Cost
- Absorption Unit COP
- Generator Efficiency
- % Heat Recovery


Example Spreadsheet Model for 8200 annual operating hours

	Therm per	ns Plant Co	act						Heat Recover		tential covered		otential ec. Heat	COP of Absorpti l	PTILof	
HHV BTU I	•		net LHV B	Tllnor	Electric		kWh		Potentia	'	at (LHV) B			•		Refrig tons
Deca-ther			Out Deca-1					•	(LHV)		. ,		Wh (LHV)		kWh	(RT)/kWh
1,000				00,000) BTO/K)0%	3413	108.12	• •	40%	3600		3330	Ŭ	1665	
1,000		kWh savings		500,000		5070	5115 100.1		. 40/0		500000		5550	0.5	1005	0.1307
		r kWh		Utility Cost R		covinge		Dofrig ¢	coving		by Cost	ofria	t coving		Cost Dofrig	¢ covinge
0	0 1		-		-	-	-	-	-		-	-		-		-
Sys kWh/	-	nerated	per kV		•		per kWh	•				егк	Wh made			Nh made
	0.85	0.1		.1000		0.0118	0.1250)	0.014		0.1500		0.017		L750	0.020638
Natural Gas	S		Capital			% of			% 0					% of		
Cost per Deca-	Fuel Cost	Maint. cost	Recovery Co			Potential Rec Heat	Value per kWh at COP	Net Cost p kWh after		tential CHeat	Value per kWh at C			Potential Rec Heat		Net Cost per kWh after
Therm	per kWh		.009)	Cost	U	Used	of 0.5	heat recov			of 0.5			Used	of 0.5	heat recovery
\$4.00	1		,		\$0.108	100%			0.090	90		.018	\$0.092	80%		,
\$3.90	0 \$0.036	1 \$0.025	\$0.0	46	\$0.107	100%	\$0.01	3 \$C	0.089	90	% \$0	0.018	\$0.091	80%	% \$0.01	8 \$0.093
\$3.80	0 \$0.035	1 \$0.025	\$0.0	46	\$0.106	100%	\$0.01	3 \$C	0.088	90	% \$0	0.018	\$0.090	80%	\$0.01	\$0.092
\$3.70	\$0.034	2 \$0.025	\$0.0	46	\$0.105	100%	\$0.01	3 \$C	0.088	90	% \$0	0.018	\$0.089	80%	\$0.01	8 \$0.091
\$3.60	0 \$0.033	3 \$0.025	\$0.0	46	\$0.104	100%	\$0.01	B \$C	0.087	90	% \$0	0.018	\$0.088	80%	\$0.01	\$0.090
\$3.50	0 \$0.032	4 \$0.025	\$0.0	46	\$0.103	100%	\$0.01	3 \$C	0.086	90	% \$0	0.018	\$0.087	80%	\$0.01	8 \$0.089
\$3.40		4 \$0.025	\$0.0	46	\$0.102	100%			0.085	90	% \$0	0.018	\$0.087	80%	\$0.01	8 \$0.088
\$3.30			1	-	\$0.102	100%	1		0.084	90		0.018	\$0.086	80%	1	
\$3.20				-	\$0.101	100%	1		0.083	90		0.018	\$0.085	80%	1	
\$3.10				-	\$0.100	100%	1		0.082	90		0.018	\$0.084	80%	1	
\$3.00	0 \$0.027	7 \$0.025	\$0.0	46	\$0.099	100%	\$0.01	3 \$C	0.081	90	% \$0	0.018	\$0.083	80%	% \$0.01	8 \$0.085

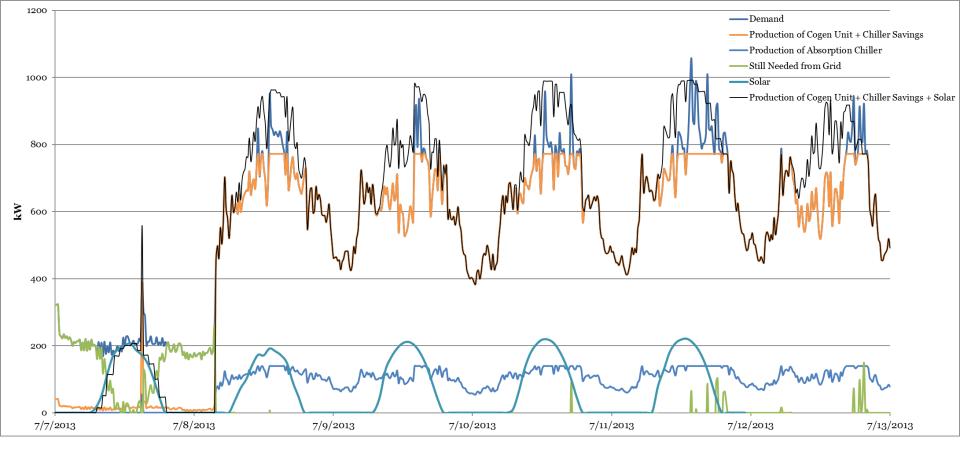
So, where is this solution competitive?

Obviously depends on the factors discussed:

- High utilization, cost of Capital, First Cost
- Economical Natural Gas
- States with High Industrial User Power Rates
- California, New England (exc Maine), New Jersey
- Commercial Users with Significant Refrigeration in above states plus New York

Case Study: Precut Packaged Salad Plant

- Challenge: No requirement for hot water, daily variable power demand profile
- Motivation: Their electrical cost of operation for new facility was three times the pro-forma business case
- Constrained Site, no room for solar, building not built for structural load of solar panels
- Solution: A 633 kW natural gas fueled cogeneration plant also producing 125 TR



633 kW 125 RT Cogeneration Ammonia Absorption Refrigeration Fresh Venture Foods Santa Maria, California

Future Steps and Opportunities

- Net Zero Challenges
 - High energy intensity utility customers such as food processors cannot achieve net zero onsite energy use
- Combine with Battery and Solar
 - Greater Reliability
 - Increased Utility bill savings
 - Reduced Demand Charges
 - Lower Carbon Footprint

One week Electrical use profile for precut bagged salad plant

- 633 kW Cogen Unit with 125 RT absorption unit
 - With refrigeration effect from absorption refrigeration system reduces demand peak 780 kW
 - Peak Daily Demand in previous Slide 1055 kW
 - Prior to Cogen system coming on line demand charges were >40% of electrical billing
 - After Cogen online demand charges >70% of remaining electrical bill

Rate Schedule	Customer Charge/ Meter Charge	Season	Time-of-Use Period	Demand Charges (\$/kW)	Energy Charges (\$/kWh)		PDP ^{1/} Charges	PDP ^{2/} Credits DEMAND (per kW)	PDP ^{2/} Credits ENERGY (per kWh)	Power Factor Adjustment (\$/kWh/%)	"Average" Total Rate ^{3/} (\$/kWh)
E20 Secondary Firm		Summer	Max Peak	\$19.02	\$0.15018		\$1.20	(\$5.69)	\$0.00000	\$0.00005	
			Part-Peak	\$5.23	\$0.10981			(\$1.40)	\$0.00000		
			Off-Peak	-	\$0.08210				-		
	m \$39.42505 per day		Maximum	\$17.87				-			\$0.17553
		Winter	Part-Peak	\$0.05	\$0.10395			-	-	\$0.00005	
			Off-Peak	-	\$0.08893						
			Maximum	\$17.87	-						

- Maximum demand charge \$17.87/kW plus peak summer demand charge of \$19.02/kW
 - Potential to avoid 275 kW X \$36.89 = \$10,145 each summer month and 275 X \$17.87 = \$4914 each winter month for a total annual savings of \$90,000.

- 3 Li lon battery units at 220 kWh each with 100 kW inverters will meet requirement
- Cogen can charge during lower load night hours
- Only delta operating cost is cost of fuel
- What battery cost makes economic sense?
 - 5 year simple payback for an installed battery system cost of \$682/kWh. (Current Pricing without incentives)
 - 3 year simple payback requires \$409/kWh (2020 Price)
 - 1.5 year simple payback @ \$200/kWh (Predicted 2024)

- Does a combined Cogen plus battery solution make sense? Simple Answer: yes
 - Rapidly declining battery costs, Accelerated Depreciation, 30% ITC if solar charged, California \$400/\$290 kWh incentive
 - Battery storage also protects against unplanned "trips" of the Cogen Unit causing a monthly demand charge spike. Improves reliability
- Can couple with solar to reduce carbon footprint of facility

Questions?

Ray Cole, PE

CEO

Axiom Engineers, Inc. rayc@axiomengineers.com www.axiomengineers.com

