Considerations in Evaluating Efficiency Programs in the Agriculture Sector

Frank Loge
University of California, Davis
Director, Center for Water-Energy Efficiency
Professor, Civil and Environmental Engineering
Introduction to CWEE

Advance water management solutions for the integrated savings of water & energy resources
Deemed savings values
tipulations based on historical & verified data

Measurement & Verification (M&V)
a *project-by-project approach involving estimating energy and/or demand savings*
- Retrofit Isolation
- *Whole Facility* billing regression analysis
- Calibrated Simulation (e.g., EnergyPlus)

Large-scale consumption data analysis
uses metered energy use data to compare the energy use of the program participants with the energy use of a control group

Farm Sites in Research Study
Agricultural Electricity

Agricultural Accounts
- PG&E ~ 13,300 meters
- SCE ~ 3,400 meters

In Total:
~ 1,900,000 billing records
~ 450,000,000 hourly kWh records
Challenges

Data availability:
- Groundwater extraction
- Crop production levels
- Operational changes

Regional long term trends, which are driven by external factors:
- Drought
- Groundwater levels
- Crop transitions
Irrigation Pump Rebate Programs

Can efficiency program savings be identified using a simple, pre-post comparison?

→ Yes, but estimated savings are unreliable in small sample sizes
Behavior-based Programs

Additional Challenges
• Expected savings are small (<10%)
• Impossible to isolate
• Causal attribution is difficult

Control Group Comparison
• Matching methods used to identify similar control group (using baseline data)
• Panel data regression model used to incorporate longitudinal (over time) variation and cross-sectional (between farm) variation
Behavior-based Programs

- Smaller savings require larger samples sizes to identify.
- Power calculations are illustrated, given the observed variation and selected model.

→ Larger sample sizes (more participating farms) are needed for these types of studies.

![Graph showing power calculations for different savings levels with varying sample sizes.](image)
Conclusions

Technology retrofit programs
• Pre-post comparisons (using retrofit isolation, or whole facility billing regression analysis) are possible, given access to the appropriate data
• An alternative is to carefully aggregate billing/consumption data regression analysis from many retrofits & farms

Behavior-based efficiency programs
• Large-scale consumption data analysis with a control group is the best approach
• Ideally designed as Randomized Controlled Trial (RCT)
• If RCT was not planned for, quasi-experimental approaches are possible
• In either case, control group meter data is required
This project was funded by the California Emerging Technologies Program and the California Energy Commission’s Electric Program Investment Charge (EPIC) program.

For more information, contact Anish Gautum at Anish.Gautam@energy.ca.gov
Frank Loge
University of California, Davis
Director, Center for Water-Energy Efficiency
Professor, Civil and Environmental Engineering
(530) 754-2297
fjloge@ucdavis.edu