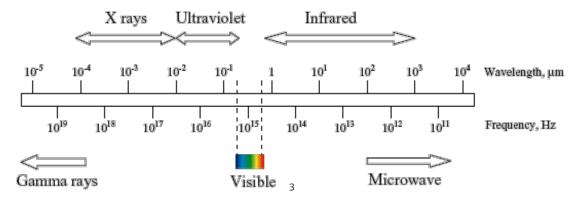
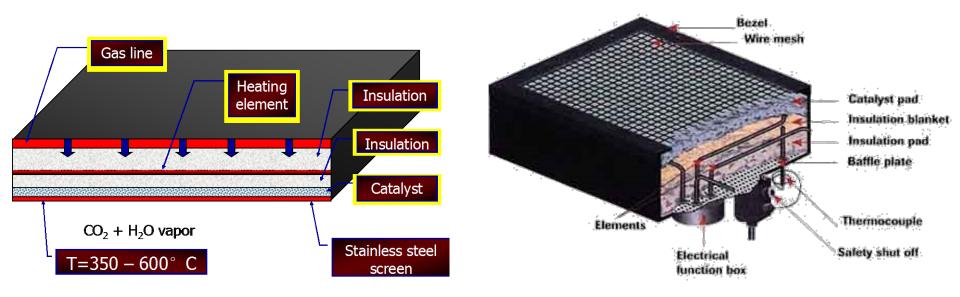


Energy Efficient Infrared Drying of Healthy Snacks and Walnuts

Zhongli Pan

Adjunct Professor


Department of Biological and Agricultural Engineering UC Davis zlpan@ucdavis.edu


Infrared Heating

- Infrared *radiant* heating transfer is often more efficient than convective heat transfer
- *Large amount* of controlled heat for heating food materials
- Improved final product *quality and safety*

Catalytic Infrared Emitter

Infrared Heating for Food and Ag Processing

Research and applications

- Dehydration
- Blanching
- Peeling
- Disinfestation
- Disinfection
- Stabilization

Commercial Demonstration of Innovative Energy Efficient Infrared Processing of Healthy Fruit and Vegetable Snacks

Need for Healthy Snacks

Blanching \rightarrow Drying \rightarrow Vacuum frying

Steam blanched and vacuum fried vs IR treated and vacuum fried chips

Sequential IR Blanching/Drying and Hot Air Drying

New processing method for healthy snacks

- IR for simulations blanching and drying
- Followed by hot air drying

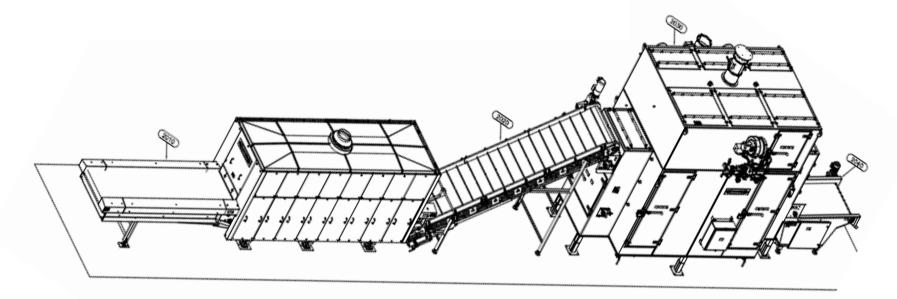
Commercial Production System

Objective

- Demonstrate new sequential IR and hot air drying technology
 - Energy saving
 - New healthy snacks

Partners

- UC Davis
- USDA-ARS
- Treasure8



Commercial Production System Design

Innovative and Energy Efficient Infrared Processing of Healthy Fruit and Vegetable Snacks

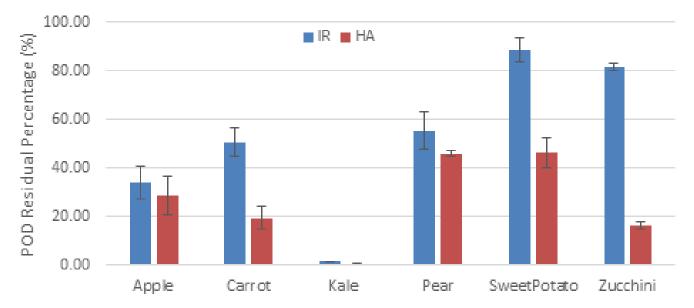
Western Regional Research Center, USDA-ARS & UC Davis

Dr. Zhongli Pan

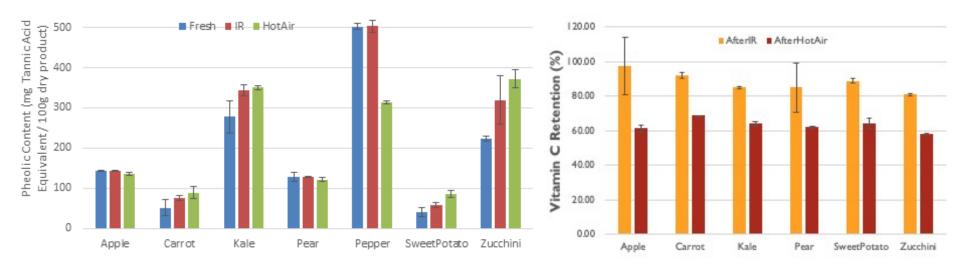
Healthy Snacks

Bell pepper

Kale



Drying Time


Product	thickness, mm	IR drying time	H A drying time		
Kale	original thickness	2 min	50 min		
Carrot	1.4 mm	2.25 min	60 min		
Pear	1.6 mm	2.25 min	60 min		
Squash	2.2 mm	2.25 min	60 min		
Bell pepper	3.3 mm	2.25 min	60 min		
Apple	2.1 mm	2.5 min	60 min		

Residual Peroxidase Enzyme Activities after IR and Hot Air Drying

Phenolic Content and Vitamin C Retention

Energy Consumption

- Fried potato chips energy consumption is 833.33 kW per 100 kg (Wu et al. 2010)
- SIRDBHAD saved about 26.3% (bell pepper) to 72.6% (kale) energy against frying
- Compared to freeze drying, the SIRDBHAD could save 62.5-82.5% of energy (Rudy, 2007)

Product	Capacity,	Energy used p	Specific		
	Kg fresh/h	Natural gas, therms	Electricity, kW	Total energy, kW	energy, MJ/kg of water removed
Apple	95.0	12.57	25.89	394.21	16.73
Carrot	79.7	10.66	20.95	333.54	13.63
Kale	78.5	7.25	15.66	228.17	9.64
Pear	113.0	7.54	14.82	235.88	10.07
Pepper	110.1	22.64	50.36	614.00	24.03
Sweet					
Potato	88.02	9.22	18.11	288.32	13.30
Zucchini	132.0	16.35	35.96	515.23	19.62

Onsite Demonstration

Onsite Demonstration

Conclusions

- SIRDBHAD technology produces crispy and healthy snacks with capacity -78.5 kg/h to 132.3 kg/h
- The IR dry-blanching inactivated 50-99% of the peroxidase enzyme reducing enzymatic browning
- SIRDBHAD dried chips has same level of overall acceptance compared to freeze dried products
- The energy saving by SIRDBHAD technology to oil frying varied from 26.3% to 72.6%
- Comparing to freeze drying, the SIRDBHAD resulted in huge energy savings of 62.5-82.5%

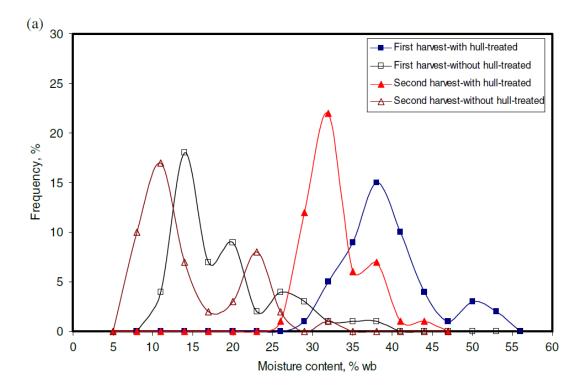
Demonstration and Commercial Implementation of Energy Efficient Drying for Walnuts

Current Walnut Harvest and Drying Practices

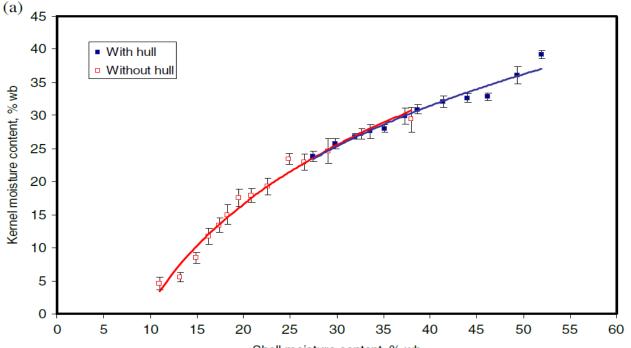
Current Walnut Harvest and Drying Practices

- Long time (up to 24 h) limiting the throughput capacity
- Energy intensive 12 therms of gas and 24 kWh electricity per ton of dried nuts
- High variability in moisture Commingling all nuts and causing over-drying and under-drying
- Over-drying of low moisture nuts leading to 6-8 h of additional drying time
- Over-drying and under-drying leading to poor quality and wastage of energy
- Moisture picked up during washing (4%) absorbed into shells during 2-3 h of waiting in bins resulting in additional 4-6 h of drying

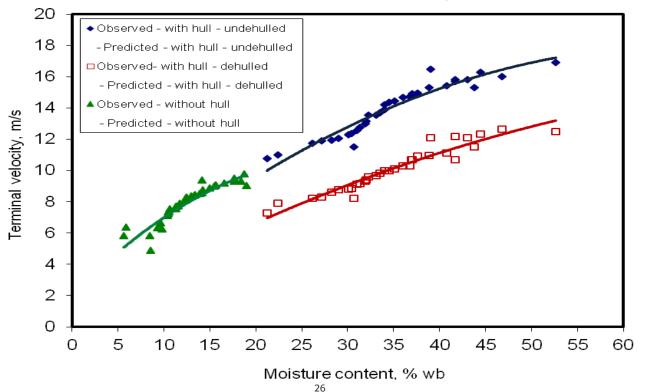
Walnuts at Harvest


Whole Hull Attached

Partial Hull Attached


Without Hull

Moisture Variability



Relationship Between Shell and Kernel MCs

Shell moisture content, % wb

Terminal Velocity

Walnut Drying

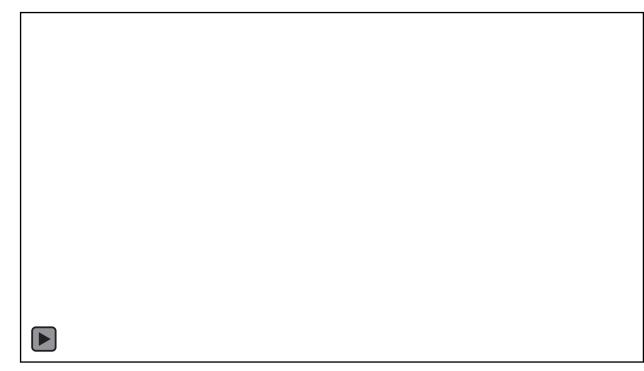
Commercial Drying System

Objective

- Demonstrate the new drying technology
 - Terminal velocity separation
 - Sequential IR and hot air drying technology
 - Energy saving
 - Improved throughput

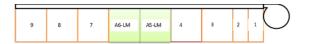
Partners

- UC Davis
- USDA-ARS
- Wizard Manufacturing
- Emerald Farms



New Walnut Drying Method

- Terminal velocity separation
 - High moisture and low moisture nuts
- IR drying
- Followed by hot air drying



New IR and Hot Air Walnut Drying

Locations of Test Bins

Measurements

- Ambient temperature
- Hot air temperature below the bins
- Static air pressure below the bins
- Samples for MC at Initial, 12%, 10% and 8%
- Drying time for individual bins

With IR pre-drying

Without IR pre-drying

Drying Time Reduction

Walnut type	Bin	Air velocity, (m/s)	Hot air temp, °C	Drying time to 8% MC (min)	Drying time saving by IR drying (%)
Low	A5	0.58	42.4	1554	22.69
	A6	0.58	42.4	1685	
Low IR	C4	0.60	40.1	1232	
	C5	0.60	40.3	1272	
High	D4	0.60	42.4	1400	17.05
	D5	0.60	43.8	1532	
High IR	B5	0.60	41.3	1112	
	B6	0.60	41.4	1320	

Test #1

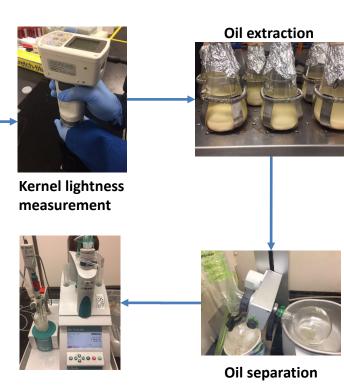
Test #2

Walnut type	Bin	Air velocity, (m/s)	Hot air temp, °C	Drying time to 8% MC (min)	Drying time saving by IR drying (%)
Low	A5	0.60	42	688	
	A6	0.60	42	700	13.55
Low IR	C4	0.60	39	617	15.55
	C5	0.60	39	583	
High	D4	0.60	41	968	
	D5	0.60	41	1051	26.50
High IR	B5	0.60	40.5	783	20.50
	B6	0.60	40.5	700	

				Enei	rgy	Šavi r	າg		
Walnut type	Bin	Drying time (min)	Hot air temp, C	HA energy, MJ	IR energy, MJ	El. energy, MJ	Total energy, MJ	Average Total Energy (MJ	Energy Saving, %
	A5	1554	42.4	18711	0	932	19643.68	20471.64	
Low	A6	1685	42.4	20289	0	1011	21299.61		10.04
	C4	1232	40.1	13076	2228	758	16061.32	16388.65	19.94
Low IR	C5	1272	40.3	13707	2228	782	16715.98		
	D4	1400	42.4	17402	0	840	18242.35	19967.94	
High	D5	1532	43.8	20774	0	919	21693.54		
	B5	1112	41.3	12835	2228	686	15748.49	17064.57	14.54
High IR	B6	1320	41.4	15342	2228	810	18380.65		

Walnut type	Bin	Drying time (min)	Hot air temp, °C	HA energy, MJ	IR energy, MJ	El. energy, MJ	Total energy, MJ	Average Total energy, MJ	Energy Saving, %
	A5	688	42	8997	0	413	9410		0.00
Low	A6	700	42	9154	0	420	9574	9492	9.96
	C4	617	39	6619	1566	559	8744		
Low IR	C5	583	39	6254	1566	528	8348	8546	
	D4	968	41	12044	0	581	12625		12.00
High	D5	1051	41	13077	0	631	13708	13166	13.90
	B5	783	40.5	9317	1845	710	11872		
High IR	B6	700	40.5	8322	1845	634	10801	11336	

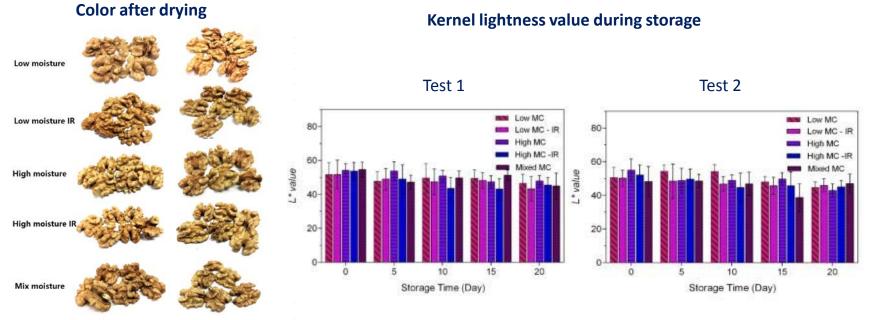
Test #1


Test #2

Quality and Shelf Life of Walnuts

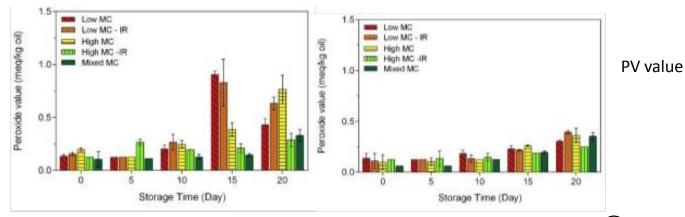
Incubator at 35°C and 52±1% RH

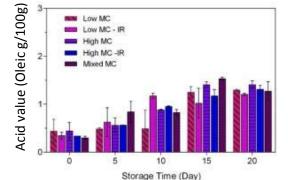
Quality evaluation

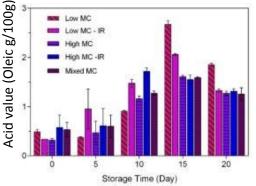

- > PV (Iodine clock reaction)
- > AV (Neutralization reaction)
- Kernel lightness (Colorimeter)

Shelf life study

> Accelerated aging experiment


Quality and Shelf Life of Walnuts


Sept_30



Quality and Shelf Life of Walnuts

Acid value

Demonstration

Conclusions

- IR dryer Capacity 10.67 to 14.22 tons/h
- Drying time reduction 13.55% to 26.50%
- Energy saving 9.96% to 19.94%
- Quality and shelf life
 - No significant difference in the color, PV and AV in 2 years of storage

Acknowledgements

Project team

- Zhongli Pan Ph.D.
- Chandrasekar Venkitasamy Ph.D.
- Ragab Khir Ph.D.
- Tara McHugh Ph.D.
- Ruihong Zhang Ph.D.

Collaborators and Supporters

- Rajesh Kapoor (CEC)
- Kevin Mori (CEC)
- Virginia Lew (CEC)
- Rob Neenan (CLFP)
- UC Davis
- USDA-ARS
- Treasure8
- Wizard Manufacturing
- Emerald Farms

This project was funded by the California Energy Commission's Natural Gas R&D program. For more information, contact Kevin Mori at <u>kevin.mori@energy.ca.gov</u>

Information on the project can be found at:

Walnuts: http://innovation.energy.ca.gov/SearchResultProject.aspx?p=29784

Healthy

Snacks:<u>http://innovation.energy.ca.gov/SearchResultProject.aspx?p=29803&tks=637024379874</u> 521535